MATH 2028 Honours Advanced Calculus II 2024-25 Term 1 Problem Set 5

due on Nov 15, 2023 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: All surfaces are contained inside \mathbb{R}^3 with rectangular coordinates (x, y, z). We use U to denote a bounded open subset of \mathbb{R}^2 .

Problems to hand in

- 1. Let a > 0 be a fixed constant. Find the area of the portion of the cylinder $x^2 + y^2 = a^2$ lying above the xy-plane and below the plane z = y.
- 2. Let S be the unit sphere $x^2 + y^2 + z^2 = 1$. Calculate $\int_S x^2 d\sigma$. (Hint: make use of the symmetry)
- 3. Let S be the portion of the plane x + 2y + 2z = 4 lying in the first octant of \mathbb{R}^3 , oriented with outward normal pointing upward. Find
 - (a) the area of S,
 - (b) $\int_{S} (x-y+3z) d\sigma$,
 - (c) $\int_{S} \vec{F} \cdot \vec{n} \, d\sigma$ where $\vec{F}(x, y, z) = (x, y, z)$.
- 4. Let S be the portion of the helicoid given by the parametrization $\vec{r}(u,v): (0,1) \times (0,2\pi) \to \mathbb{R}$ by

$$\vec{r}(u,v) = (u\cos v, u\sin v, v).$$

Suppose S is oriented by the upward pointing unit normal \vec{n} . Compute $\int_S \vec{F} \cdot \vec{n} \, d\sigma$ where $\vec{F}(x, y, z) = (0, x, 0)$.

Suggested Exercises

- 1. Find the area of the portion of the cone $z = \sqrt{2(x^2 + y^2)}$ lying beneath the plane y + z = 1.
- 2. Find the area of the portion of the cylinder $x^2 + y^2 = 2y$ lying inside the sphere $x^2 + y^2 + z^2 = 4$.
- 3. Find the flux of the vector field $\vec{F}(x, y, z) = (x^2, y^2, z^2)$ outward across the given surface S (all oriented with outward pointing normal pointing away from the origin, unless otherwise specified):
 - (a) S is the sphere of radius a centered at the origin.
 - (b) S is the upper hemisphere of radius a centered at the origin.
 - (c) S is the cone $z = \sqrt{x^2 + y^2}$, 0 < z < 1, with outward pointing normal having a negative z-component.
 - (d) S is the cylinder $x^2 + y^2 = a^2$, $0 \le z \le h$.

- (e) S is the cylinder $x^2 + y^2 = a^2$, $0 \le z \le h$, along with the disks $x^2 + y^2 \le a^2$, z = 0 and z = h.
- 4. Calculate the flux of the vector field $\vec{F}(x, y, z) = (xz, yz, x^2 + y^2)$ outward across the surface of the paraboloid S given by $z = 4 x^2 y^2$, $z \ge 0$ (with outward pointing normal having positive z-component).
- 5. Compute $\int_{S} \vec{F} \cdot \vec{n} \, d\sigma$ where $\vec{F}(x, y, z) = (x, y, z)$ for each of the following surfaces in \mathbb{R}^{3} (all oriented with the outward pointing unit normal pointing away from the origin):
 - (a) the sphere of radius a centered at the origin,
 - (b) the cylinder $x^2 + y^2 = a^2$, $-h \le z \le h$,
 - (c) the cylinder $x^2 + y^2 = a^2$, $-h \le z \le h$, together with the two disks $x^2 + y^2 \le a^2$, $z = \pm h$,
 - (d) the cube with vertices at $(\pm 1, \pm 1, \pm 1)$.
- 6. Repeat the question above for the vector field $\vec{F}(x, y, z) = (x^2 + y^2 + z^2)^{-3/2}(x, y, z)$.
- 7. Prove that the area of a graphical surface S given by z = f(x, y), where $f : U \to \mathbb{R}$ is a C^1 function, is given by

Area(S) =
$$\iint_U \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \, dA.$$

Challenging Exercises

1. Let $\alpha, \beta, f: [0,1] \to \mathbb{R}$ be C^1 functions with f(t) > 0 for all $t \in [0,1]$. Suppose that S is a surface in \mathbb{R}^3 whose intersection with the plane z = t is the circle

$$(x - \alpha(t))^2 + (y - \beta(t))^2 = (f(t))^2, \qquad z = t$$

for each $t \in [0, 1]$ and is empty for $t \notin [0, 1]$.

- (a) Set up an integral for the area of S.
- (b) Evaluate the integral in (a) when α and β are constant functions and $f(t) = (1+t)^{1/2}$.
- (c) What form does the integral take when f is constant and $\alpha(t) = 0$ and $\beta(t) = at$ where a is a constant?